فیزتک

فیزیک و تکنولوژی

فیزیک و تکنولوژی

آموزگار هستم. از آنجا که پروژه کارشناسی بنده حول ترجمه مقالاتی درباره ظهور اشعه ایکس و کاربردهای آن بود، این صفحه را ابتدا تحت عنوان اشعه ایکس در فروردین 1384 راه اندازی کردم. بعدها بخاطر نشر مطالب متفاوت و گوناگون به فیزتِـــک تغییر نام دادم. فیزتک از سرکلمه های فیزیک و تکنولوژی ساخته شده است.
/ پشتیبان دانش آموزان مدارس بین الملل
International School's Students Support

طبقه بندی موضوعی

۲ مطلب در شهریور ۱۳۸۴ ثبت شده است

وقتی در طول بارندگی فقط یک رنگین کمان می بینیم در واقع چند رنگین کمان وجود دارد؟ پاسخ این سؤال آنطور که فکر می کنید ساده نیست! وقتی نور وارد یک قطره آب می شود، در داخل قطره بازتاب کرده، و آنچه به چشم ما باز می تابد رنگین کمان را تشکیل می دهد. هر قطره باران، نوری را که واردش می شود در تمام جهات ممکن بازتابانده و می شکند. اولین بار که نور با قطره برخورد می کند، یک پرتو کسری از آن نور بازتاب می کند و و بقیة آن در طول قطره حرکت می کنند تا به پشت قطره از سمت داخل برخورد کنند. دوباره، مقداری از نور شکت خورده و مقداری بازتاب می کند. در هر برخورد با سطح سطح داخلی قطره، مقداری از نور باز می تابد و در قطره می ماند، و باقیماندة آن خارج می شود. بنابراین پرتو های نور می توانند بعد از یک، دو، سه بازتاب داخلی یا بیشتر از قطره خارج شوند.

وقتی شما دو رنگین کمان می بینید، اولین یا اصلی ترین کمان در زاویة 42 درجه، با نور قرمز در بیرون و نور بنفش در داخل به طور واضح دیده می شود. کماان دوم همیشه کم رنگ تر بوده و بواسطة بازتاب دوم با رنگهای معکوس (بنفش در بیرون و قرمز در درون) در زاویة 51 تشکیل می شود. اسحاق نیوتن یک معادله ریاضی بر حسب اندازه زاویة رنگین کمانها بعد از بازتاب N اُمِ داخل قطره بدست آورد. او معتقد بود که در بازتاب سوم نور کافی وجود ندارد که در واقع شخص آنرا ببیند، از اینرو هرگز مسئله را برای 3=N حل نکرد. ادموند هالی، بعد از نامگذاری ستارة دنباله دار هالی، محاسبات را بر دوش گرفت و کشف کرد که سومین رنگین کمان در زاویة 40 درجه و 20 ثانیه تشکیل می شود، و شگفت زده شد. این رنگین کمان نبایستی در مقابل خورشید تشکیل شود بلکه دور تا دور خورشید تشکیل می شود! دو هزار سال بود که بشر به اشتباه در طرف دیگر آسمان در جستجوی این کمان بود.

Somewhere Over Which Rainbow?
by Willa Larsen and ScienceIQ.com



Double rainbow, note the color reversal in the faint, secondary rainbow.

How many rainbows are there really when we only see one during a rainstorm? The answer isn't as simple as you might think! Rainbows are formed when light enters a water droplet, reflects once inside the droplet, and is reflected back to our eyes. Each raindrop reflects and refracts the light that enters it in all possible ways. When light first hits the drop, a fraction of that light is reflected and the rest is transmitted through until it hits the backside of the drop on the inside. Again, some of that light is refracted and some is reflected. At each encounter with the surface inside the drop, some of the light is reflected and remains inside the drop, and the rest escapes. Therefore, light rays can escape after one, two, three or more internal reflections.

When you see two rainbows, the first or primary bow at 42 degrees, is brighter with red on the outside ending with violet on the inside. The secondary bow at 51 degrees is always fainter with the colors reversed due to the second reflection; violet on the outside ending with red on the inside. Isaac Newton derived a mathematical equation for the angular size of rainbows after a number (N) of reflections inside the droplet. He never solved the problem for N=3, since he decided that in the third pass there wouldn't be enough light for a person to actually see it. Edmund Halley, after whom Halley's comet was named, carried the calculations through and discovered that the tertiary rainbow would actually appear with an arc of 40 degrees and 20 seconds, and surprise! It should appear not opposite the sun but around the sun itself! For two thousand years, men had been looking for this arc in the wrong part of the sky!

نحوه تشکیل دو رنگین کمان

 

از آنجا که اینشتین فکر می کرد جهان ساکن است، حدس زد که حتی خالی ترین فضای ممکن، تهی از ماده و تابش، بایستی هنوز یک انرژی تاریک داشته باشد، که آنرا « ثابت [نظام مند] (وابسته به فلسفه انتظام گیتی) » نامید. زمانیکه ادوین هابل انبساط جهان را کشف کرد، اینشتین این را بزرگترین اشتباه او خواند و نظرش را رد کرد. همین که ریچارد فاینمن و دیگران نظریة کوانتومی ماده را توسعه دادند، پی بردند ‹ فضای تهی › پُر است از ذرات موقتی (‹مجازی›) که مرتباً در حال شکل دهی و نابود سازی خویش اند. فیزیکدانان به مرور گمان کردند که حقیقتاً بایستی خلاء شکل تاریکی از انرژی را داشته باشد، ولی نتوانستند اندازه اش را پیش بینی کنند.بواسطة اندازه گیریهای اخیر انبساط جهان، ستاره شناسان کشف کردند که « اشتباهِ » اینشتین یک اشتباه نبود: به راستی شکلی از انرژی تاریک ظاهر میشود که بر کل محتوای جرم-انرژی جهان تسلط دارد، و گرانش دافع خارق العاده اش در حال جدا ساختن جهان است. ما هنوز نمی دانیم که چرا یا چگونه انبساط با شتاب زیاد در جهان پیشین ( تورم ) و انبساط شتابدار کنونی ( بواسطة انرژی تاریک ) به یکدیگر مربوط ند.یک مأموریت ماوراء اینشتین انبساط را با دقت کافی اندازه گیری خواهد کرد تا بفهمیم که آیا این انرژی یک خاصیت ثابت فضای خالی است ( همانگونه که اینشتین حدس زد )، یا آیا این علائمی از ساختار قویتری را نشان می دهد که در نظریات متحد شدة مدرنِ نیروهای طبیعی امکان پذیر است.What is Dark Energy?by NASA Goddard Space Flight Center and ScienceIQ.comImage Courtesy Beyond EinsteinBecause he originally thought the Universe was static, Einstein conjectured that even the emptiest possible space, devoid of matter and radiation, might still have a dark energy, which he called a 'Cosmological Constant.' When Edwin Hubble discovered the expansion of the Universe, Einstein rejected his own idea, calling it his greatest blunder. As Richard Feynman and others developed the quantum theory of matter, they realized that 'empty space' was full of temporary ('virtual') particles continually forming and destroying themselves. Physicists began to suspect that indeed the vacuum ought to have a dark form of energy, but they could not predict its magnitude. Through recent measurements of the expansion of the Universe, astronomers have discovered that Einstein's 'blunder' was not a blunder: some form of dark energy does indeed appear to dominate the total mass-energy content of the Universe, and its weird repulsive gravity is pulling the Universe apart. We still do not know whether or how the highly accelerated expansion in the early Universe (inflation) and the current accelerated expansion (due to dark energy) are related.  A Beyond Einstein mission will measure the expansion accurately enough to learn whether this energy is a constant property of empty space (as Einstein conjectured), or whether it shows signs of the richer structure that is possible in modern unified theories of the forces of nature.